Master of Science in Computer Information Science with a Concentration in Data Science Online

Apply technical solutions to real-world problems with the techniques and methodologies you learn in our online M.S. in Computer Information Science – Data Science.

Apply by: 2/24/25 Request Info
Start classes: 3/10/25 Apply Now
Request Info Apply Now

Program Overview

Find out more about our online M.S. in Computer Information Science – Data Science

Total Tuition $31,950
Program Duration As few as 24 months
Credit Hours 30

Master software application and engineering methods to solve real-world problems in our online Master of Science in Computer Information Science with a Concentration in Data Science. This flexible program is designed for working adults and allows you to focus on the strategies and skills that align with your desired career path toward management, policy work or technical applications.

This CIS M.S. in Data Science offers a comprehensive study of data science, including mobile development, database services, enterprise and web solutions, delving into how these domains work together. Demand for computer and information technology experts is projected to increase much faster than average occupational growth as companies increasingly rely on cloud computing, big data and information security.

Designed to give you a competitive edge in technology innovation, this STEM-designated program provides access to and experience working with the most popular enterprise resource planning (ERP) software.

Graduates of this online M.S. in CIS Data Science program will learn how to:

  • Create, plan, implement and test a technical problem solution
  • Develop problem definitions and solution designs
  • Create solutions specific to current technologies, including mobile development, database services and web services
  • Create client-side and server-side designs for problem solutions
  • Create, plan, implement and test a technical problem solution
  • Develop problem definitions and solution designs
  • Create solutions specific to current technologies, including mobile development, database services and web services
  • Create client-side and server-side designs for problem solutions

Potential careers upon completion of this data science program online:

  • Software Developer
  • Business Analyst
  • Information Analyst
  • Software Developer
  • Business Analyst
  • Information Analyst

Online technology programs also available:

La Salle University offers a variety of specialized technology programs. Check out all of our technology online programs.

Total Tuition $31,950
Program Duration As few as 24 months
Credit Hours 30

Need More Information?

Call 844-466-5587 today!

Call 844-466-5587 today!

La Salle University Is Ranked in Top 50%

La Salle University is ranked in the top 50 percent of national universities by U.S. News & World Report (2024)

Recognized by Money®

La Salle was recognized as one of "The Best Colleges in America" by Money® magazine (2023)

Tuition

Pay your tuition as you go

Our master's in CIS – Data Science online program offers affordable, pay-by-the-course tuition which is the same for in-state and out-of-state students. All program and course fees are included in the total tuition cost.

Tuition breakdown

Total Tuition $31,950
Per Credit Hour $1,065

Tuition Breakdown

Total Tuition $31,950
Per Credit Hour $1,065

Calendar

Fit the start date that works best for you into your schedule

La Salle University online programs are delivered in an accelerated format ideal for working professionals, conveniently featuring multiple start dates each year.

Now enrolling

Next Apply Date 2/24/25
Next Class Start Date 3/10/25
TermStart DateApp DeadlineDocument DeadlineRegistration DeadlineTuition DeadlineClass End DateTerm Length
Spring I1/13/2512/30/241/3/251/3/251/2/253/8/258 weeks
Spring II3/10/252/24/252/28/252/28/253/6/255/8/258 weeks
Summer I5/12/254/29/255/2/255/15/255/8/257/6/258 weeks
Fall 18/25/258/12/258/16/258/28/258/21/2510/17/258 weeks
Fall II10/20/2510/6/2510/10/2510/23/2510/16/2512/12/258 weeks

Now Enrolling

Next Apply Date 2/24/25
Next Class Start Date 3/10/25

Take the next step toward earning your degree online from La Salle University.

Admissions

Application to this online CIS master’s degree program is simple

Applications for the M.S. in Computer Information Science – Data Science are evaluated on a holistic basis. The Admissions Committee takes into account interest, aptitude and potential for achievement in graduate studies. The requirements include:

Admission Requirements:

  • Bachelor’s degree from an accredited institution
  • Minimum 3.0 GPA*
  • No GMAT required

Prior to evaluation by the Admissions Committee, applicants must submit the following:

  • Transcript(s) from the college/university where you earned your bachelor’s degree and, if applicable, master’s degree. You will be notified if you need to submit additional transcripts for advising purposes.
  • Minimum 3.0 GPA.
    • *Please note: Prospective students with a GPA of 2.5-2.9 are encouraged to apply and will be evaluated for the program based on their entire application.
  • No GMAT/GRE required
  • A current professional resume
  • Provide a personal statement (about 500 words in length) explaining why you are interested in this program, your qualifications and how this program will assist with your professional goals

Documentation can be sent via email to [email protected]. If you need to submit official documents by mail, send them to:

La Salle University
Office of Adult Enrollment
Box 112
1900 West Olney Avenue
Philadelphia, PA 19141

Have a question? Call us at 844-466-5587.

Admission Requirements:

  • Bachelor’s degree from an accredited institution
  • Minimum 3.0 GPA*
  • No GMAT required

Courses

Find out more about the topics you will explore in this data science online program

For the master's in CIS online data science program, the curriculum is comprised of five core courses, four specialty courses and the integrated capstone course.

Duration: 8 Weeks weeks
Credit Hours: 3
This course addresses the design and development of standards-based client interfaces for Web applications. The course includes Web-based standards and toolsets that support these standards. Application development emphasizes client Web interface scripting to serve as a general introduction to computer programming. The specific toolset used will depend on the types of interfaces to be developed, considering technology trends. Examples of possible tools include XHTML, CSS, and JavaScript. This course may be waived if the student has prior experience in client interface development.
Duration: 8 Weeks weeks
Credit Hours: 3
This course focuses on the development of Web services for use by many different types of Web applications. The course develops basic programming techniques to implement the server side function of the application. The course uses a non-Windows interface for the tools set.
Duration: 8 Weeks weeks
Credit Hours: 3
This course encompasses programming models that support database access, including ADO.NET. It covers client/server and multitiered architectures; development of database applications; Internet and intranet database design and implementation; database-driven Web sites; and use of XML syntax related to databases. Examples of the possible tool sets for this tool set are PHP and mySQL on either a Linux or Windows server. The course also considers privacy of data and data protection on servers.
Duration: 8 Weeks weeks
Credit Hours: 3
This course covers development of mobile applications and integration with existing systems on the devices. Students will extend development of mobile solutions with enhancements to views, layouts, and intents including interaction with the location-based services, messaging services, multimedia interfaces, and sensors available on the mobile device. The applications will manage data sources, both locally and from database providers. The applications will be tested in an emulation environment and prepared for deployment in a mobile marketplace.
Duration: 8 Weeks weeks
Credit Hours: 3
Special Topics as assigned by student/faculty.
Duration: 8 Weeks weeks
Credit Hours: 3
Students culminate their learning with a capstone project under the supervision of a faculty advisor. Some students partner with an external company or work on a project associated with their employer as a project deliverable for that company. Prerequisite: All Core courses.
Choose 4 of the following:
Duration: 8 Weeks weeks
Credit Hours: 3
This course entails analysis and evaluation of database designs in relation to the strategic mission of the project. Topics include database systems, database architectures, and data-definition and data-manipulation languages. Also included are logical and physical database design, database models (e.g., entity-relationship, relational), normalization, integrity, query languages including SQL, and relational algebra, in addition to social and ethical considerations and privacy of data. This course incorporates case studies and a project using a relational DBMS.
Duration: 8 Weeks weeks
Credit Hours: 3
This course introduces the field of data mining, with specific emphasis on its use for Machine Learning algorithms. Techniques covered may include conceptual clustering, learning decision rules and decision trees, case-based reasoning, Bayesian analysis, genetic algorithms, and neural networks. The course covers data preparation and analysis of results. Skills in Microsoft Excel are useful.
Duration: 8 Weeks weeks
Credit Hours: 3
This course introduces students to the field of artificial intelligence (AI). Students will learn how big data and data mining techniques are utilized by machines to create the AI models used by autonomous aircraft and automobiles, personal assistants, IT security software, fraud investigations and credit bureaus. The course will review the history, present day use, and future of artificial intelligence. Through case studies and current events, students will examine the benefits and risks associated with AI. The course will cover issues related to AI and privacy, ethics, and machine bias. Neuromorphic computing, the Open Neural Network Exchange (ONNX), and data analytics will also be discussed.
Duration: 8 Weeks weeks
Credit Hours: 3
This course will require students to learn the R programming language and assess how to use it and find interesting features in data. Students will learn about R and statistical best practices and how to display data in a manner that will help you explain your findings to those who do not have a technical background. Moreover, the course introduces students to modeling and simulation. Topics may include basic queueing theory, the role of random numbers in simulations, and the identification of input probability distributions.
Duration: 8 Weeks weeks
Credit Hours: 3
This course introduces students to mathematical models that can be employed to make informed decisions in a wide variety of data-driven fields, including (but not limited to) finance, banking, marketing, health care, retail, manufacturing, and transportation. Goals such as increasing revenue, decreasing costs, and improving overall efficiency of operations in the face of various constraints are considered. Students learn to recognize when a problem lends itself to a particular type of model, formulate the model, and use appropriate methods to solve or extract information from the model. Particular emphasis is placed on linear programming (with exposure to network models and integer programs) and the simplex method. Forecasting, inventory management, and queueing models, as well as Markov chains, are also studied. Additional topics covered include sensitivity analysis, duality, decision analysis, and dynamic programming. Software (both spreadsheets and a computer algebra system) is employed consistently throughout the course to expedite the solution and analysis process; emphasis will be placed on the practical application of models rather than on the models' mathematical properties.
Quote over blue
"I was looking a couple of steps down the line and saw that most people in the position I see myself being in have MBAs."
Lindsay McDonald - La Salle Student Testimonial
Lindsay McDonald | MBA in Management graduate

Request Information

Submit this form, and an Enrollment Specialist will contact you to answer your questions.

  • This field is for validation purposes and should be left unchanged.

Or call 844-466-5587

Begin Application Process

Start your application today!
Or call 844-466-5587 844-466-5587
for help with any questions you may have.